Silicon-carbon unsaturated compounds. 68. Reactions of silenes produced thermally and photochemically from acylpolysilanes with diketones

Akinobu Naka, Mitsuo Ishikawa*
Department of Chemistry and Bioscience, Kurashiki University of Science and the Arts, 2640 Nishinoura, Tsurajima-cho, Kurashiki, Okayama 712-8505, Japan

Received 15 November 2002; received in revised form 25 February 2003; accepted 5 March 2003

Abstract

The reactions of the silenes produced thermally from $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{SiCOR}(\mathbf{1 a}-\mathbf{1 d} ; \mathrm{R}=t-\mathrm{Bu}, \mathrm{Ad}, \mathrm{Ph}$, and Mes$)$ with benzil in a sealed glass tube at $140^{\circ} \mathrm{C}$ gave the respective five-membered cyclic compounds, 2,5-dioxa-1-silacyclopent-3-enes (2a-2d) in high yields. The silenes from $1 \mathbf{1 a}-\mathbf{d}$ also reacted with 4, 4^{\prime}-dimethylbenzil to give the 2,5-dioxa-1-silacyclopent-3-ene derivatives. The photolysis of $\mathbf{1 a}$ and $\mathbf{1 b}$ in the presence of benzil in a benzene solution gave the respective products, 3,6 -dioxa-1-silacyclohex-4-enes ($\mathbf{3 a}$ and $\mathbf{3 b}$) arising from $[2+4]$ cycloaddition in high yields. The thermolysis of $\mathbf{3 a}$ and $\mathbf{3 b}$ in a sealed tube at $140^{\circ} \mathbf{C}$ afforded $\mathbf{2 a}$ and $\mathbf{2 b}$, respectively, in quantitative yields.

(C) 2003 Elsevier Science B.V. All rights reserved.

Keywords: Silenes; Acylpolysilanes; Thermolysis; Photolysis; Diketones

1. Introduction

In the past decade, we have studied the thermal reactions of acylpolysilanes and found that the thermolysis of these compounds proceeds cleanly to give the silenes, which react readily with alkenes, dienes, alkynes, and diynes [1,2]. The reactions of silenes produced from pivaloyl- and adamantoyl-tris(trimethylsilyl)silane with alkenes and dienes afforded the adducts arising from formal $[2+2]$ and $[2+4]$ cycloaddition, respectively, together with the ene-type adducts [2a]. While with alkynes and diynes, the silacyclobutene derivatives were obtained as a result of $[2+2]$ cycloaddition of the silenes to a triple bond $[2 \mathrm{c}, 2 \mathrm{~d}, 2 \mathrm{e}, 2 \mathrm{f}]$.

The silenes also reacted with ketones to give various types of the products depending upon the structure of the ketones used [2b]. With acetone, the silenes gave the cyclopropane derivatives and silyl enol ethers, respectively. The formation of both types of compounds can

[^0]be best understood in terms of isomerization of the siloxetanes formed from formal [2+2] cycloaddition of the silenes to a carbonyl group in acetone. Similar reactions with benzophenone afforded the silyl enol ethers and cyclohepta-2,4,6-triene derivatives originated from the $[2+2]$ and $[2+4]$ adducts.

In order to learn more about chemical behavior of the silenes produced thermally from acylpolysilanes toward carbonyl compounds, we investigated the co-thermolysis of the acylpolysilanes with diketones. In this paper we report the thermolysis of pivaloyl-, adamantoyl-, ben-zoyl-, and mesitoyl-tris(trimethylsilyl)silane with benzil and $4,4^{\prime}$-dimethylbenzil.

2. Results and discussion

When the co-thermolysis of pivaloyltris(trimethylsilyl)silane (1a) with benzil was carried out in a sealed tube at $140{ }^{\circ} \mathrm{C}$ for $12 \mathrm{~h}, 1-[($ tert -butyl)bis(trimethylsi-lyl)methyl]-3,4-diphenyl-1-trimethylsiloxy-2,5-dioxa-1-silacyclopent-3-ene (2a) was obtained in 67% yield, along with an 18% recovery of the starting compound

1a (Scheme 1). The ${ }^{1} \mathrm{H}$-NMR spectrum of $\mathbf{2 a}$ shows the presence of three resonances at $\delta 0.12,0.34$, and 1.34 ppm, due to two kinds of trimethylsilyl protons and tert-butyl protons, as well as multiple resonances in the phenyl region. The ${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{2 a}$ reveals resonances attributed to two kinds of trimethylsilyl carbons, one quarternary sp^{3} carbon, a single resonance of olefinic carbons, two resonances of tert-butyl carbons, and four resonances of phenyl carbons. Its ${ }^{29} \mathrm{Si}-$ NMR spectrum indicates the presence of three kinds of silicon atoms at $-31.5,-0.6$, and 12.7 ppm . These results are wholly consistent with the structure proposed

1a, $R=t-B u$
1b, $R=A d$
1c, $R=P h$
1d, $R=$ Mes
$140^{\circ} \mathrm{C}, 12 \mathrm{~h}$

2a, $\mathrm{R}=t-\mathrm{Bu}$
2b, R=Ad
2c, $R=P h$
2d, R=Mes

Scheme 1.
for $\mathbf{2 a}$. Similar reaction of adamantoyltris(trimethylsilyl)silane (1b) with benzil proceeded cleanly to give a product analogous to $\mathbf{2 a}, 1-[($ adamanty $)$ bis(trimetylsi-lyl)methyl]-3,4-diphenyl-1-trimethylsiloxy-2,5-dioxa-1-silacyclopent-3-ene (2b) in 90% isolated yield. No other volatile products were detected in the reaction mixture.

The reaction of benzoyltris(trimethylsilyl)silane (1c) with benzil proceeded in the same fashion as those of acylpolysilanes $\mathbf{1 a}$ and $\mathbf{1 b}$ to give an adduct. Thus, the thermolysis of $\mathbf{1 c}$ with benzil at $140^{\circ} \mathrm{C}$ for 24 h afforded 3,4-diphenyl-1-[(phenyl)bis(trimethylsilyl)methyl]-1-tri-methylsiloxy-2,5-dioxa-1-silacyclopent-3-ene (2c) in 66\% yield. Again, no other isomers were detected by spectrometric analysis of the reaction mixture. Mesitoyltris(trimethylsilyl)silane (1d) also reacted with benzil under the same conditions to give 1-[(mesityl)bis(tri-methylsilyl)methyl]-3,4-diphenyl-1-trimethylsiloxy-2,5-dioxa-1-silacyclopent-3-ene (2d) in 44% yield as the sole product, in addition to 42% of the starting compound 1d.

In order to get more information concerning the formation of products $\mathbf{2 a}-\mathbf{2 d}$, we investigated the photolysis of $\mathbf{1 a}$ and $\mathbf{1 b}$ with benzil. In marked contrast to the thermal reaction of the acylpolysilanes with benzil, in which 2,5-dioxa-1-silacyclopent-3-enes are formed, photochemically generated silene gives sixmembered cyclic compound, arising from $[2+4]$ cycloaddition. Thus, irradiation of $\mathbf{1 a}$ in the presence of

3a, $\mathrm{R}=t-\mathrm{Bu}$
3b, R = Ad
Scheme 2.
benzil in benzene- d_{6} afforded 2-tert-butyl-4,5-diphenyl-2-trimethylsiloxy-1,1-bis(trimethylsilyl)-3,6-dioxa-1-sila-cyclohex-4-ene (3a) in 91% yield (Scheme 2). The ${ }^{1} \mathrm{H}$ NMR spectrum of 3a shows three resonances at 0.23 , 0.28 , and 0.29 ppm due to two kinds of trimethylsilyl protons and one trimethylsiloxy protons, as well as protons attributed to the tert-butyl and phenyl groups. The ${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{3 a}$ reveals resonances due to three trimethylsilyl carbons, two tert-butyl carbons, one sp^{3} ring carbon, in addition to phenyl and olefinic carbons. Its ${ }^{29}$ Si-NMR spectrum indicates the presence of four nonequivalent silicon atoms at $-24.9,-21.0$, 3.2 , and 10.4 ppm . These results are wholly consistent with the structure proposed for 3a. Similar photolysis of 3b under the same conditions again gave a $[2+4]$ cycloadduct, 3,6-dioxa-1-silacyclohex-4-ene ($\mathbf{3 b}$) in 93% yield. The structure of $\mathbf{3 b}$ was verified by spectrometric analysis, as well as elemental analysis.

To our surprise, when $\mathbf{3 a}$ and $\mathbf{3 b}$ were heated in a sealed glass tube at $140^{\circ} \mathrm{C}$ for 12 h , isomerized products $\mathbf{2 a}$ and $\mathbf{2 b}$ were obtained quantitatively. These results indicate that the formation of $\mathbf{2 a}-2 \mathbf{d}$ in the co-thermolysis of $\mathbf{1 a} \mathbf{- 1 d}$ with benzil may be best explained by thermal isomerization of the dioxasilacyclohex-4-ene derivatives analogous to 3 once formed. A possible mechanism for the formation of 2a and $\mathbf{2 b}$ from 3a and 3b is shown in Scheme 3. At first, a 1,2 -shift of a trimethylsiloxy group on the sp^{3} ring carbon in 3 to the ring silicon occurs, accompanying a 1,2 -trimethylsilyl shift from the ring silicon to the ring carbon to give 4,5 -diphenyl-1-trimethylsiloxy-1,2-bis(trimethylsilyl)-3,4-di-

(A)
oxa-1-silacyclohex-4-ene (A). Unfortunately, evidence for the production of \mathbf{A} in the thermolysis of $\mathbf{1}$ with benzil has not yet been obtained at present. However, such intramolecular exchange reaction between trimethylsiloxy and trimethylsilyl group has been observed in the thermolysis of 2,3 -di(tert-butyl)-2-(trimethylsi-loxy)-1,1-bis(trimethylsilyl)-1-silacyclobut-3-ene 3a and 2-adamantyl-4,5-dimethyl-2-trimethylsiloxy-1,1-bis(tri-methylsilyl)-1-silacyclohex-4-ene 3b. Finally, ring contraction of A would afford the observed product, 2,5-dioxa-1-silacyclopent-3-ene 2.
Next, we carried out the reaction of $\mathbf{1 a}-1 \mathbf{d}$ with $4,4^{\prime}-$ dimethylbenzil in a sealed glass tube under the same conditions. The co-thermolysis of 1 a with $4,44^{\prime}$-dimethylbenzil at $140{ }^{\circ} \mathrm{C}$ for 24 h again gave $1-[($ tert-butyl)bis(tri-methylsilyl)methyl]-3,4-di(p-tolyl)-1-trimethylsiloxy-2,5-dioxa-1-silacyclopent-3-ene (4a) in 63% yield, along with a 27% recovery of the starting acylpolysilane $\mathbf{1 a}$. Similarly, the reaction of $\mathbf{1 b}$ with $4,4^{\prime}$-dimethylbenzil produced 2-[(adamantyl)bis(trimethylsilyl)methyl]-4,5(p-tolyl)-2-trimethylsiloxy-1,3-dioxa-2-silacyclopent-4ene (4b) in 90% yield (Scheme 4). Compound 1c and 1d also reacted with $4,4^{\prime}$-dimethylbenzil under the same conditions to give $2-[($ phenyl $)$ bis(trimethylsilyl)methyl]-4,5-(p-tolyl)-2-trimethylsiloxy-1,3-dioxa-2-silacyclo-pent-4-ene (4c) and 2-[(mesityl)bis(trimethylsi-lyl)methyl]-2-trimethylsiloxy-4,5-(p-tolyl)-1,3-dioxa-2-silacyclopent-4-ene ($\mathbf{4 d}$) in 77 and 23% yields, respectively. The structures of $\mathbf{4 a - 4 d}$ were verified by spectrometric analysis, as well as by elemental analysis (see Section 3).
The reactions of the present silenes with aliphatic diketones such as diacetyl, 3,4-hexanedione, and bipivaloyl gave complex mixtures. The reactions of $\mathbf{1 a}-\mathbf{1 d}$ with diacetyl and 3,4-hexanedion in a sealed glass tube at $140^{\circ} \mathrm{C}$ for 12 h afforded many volatile products. Presumably, enolization of the ketones is involved, and enols would also act as the reagents. The reactions of $\mathbf{1 a}-\mathbf{1 d}$ with bipivaloyl, however, gave nonvolatile products. GLC analysis of the reaction mixture showed no

Scheme 4.
appreciable amount of volatile products except for a small amount of unchanged bipivaloyl.

In conclusion, the co-thermolysis of acylpolysilanes 1a-1d with benzil and $4,4^{\prime}$-dimethylbenzil at $140^{\circ} \mathrm{C}$ afforded the respective dioxasilacyclopentene derivatives $\mathbf{2 a}-\mathbf{2 d}$ and $\mathbf{4 a}-\mathbf{4 d}$. The photolysis of $\mathbf{1 a}$ and $\mathbf{1 b}$ in the presence of benzil gave the 3,6-dioxa-1-silacyclohex-4ene derivatives whose thermolysis produced $\mathbf{2 a}$ and $\mathbf{2 b}$ quantitatively.

3. Experimental

3.1. General procedure

All thermal reactions of acylpolysilanes $\mathbf{1 a}-\mathbf{1 d}$ with diketones were carried out in a degassed sealed tube (1.0 $\mathrm{cm} \times 15 \mathrm{~cm}$). A 100 -W mercury lamp was used for the photolysis experiment. Yields of the products were calculated on the basis of the isolated products. NMR spectra were recorded on JNM-LA300 spectrometer and JNM-LA500 spectrometer. Infrared spectra were recorded on a JEOL Model JIR-DIAMOND 20 infrared spectrophotometer. Low-resolution mass spectra were measured on a JEOL Model JMS-700 instrument. Column chromatography was performed by using Wakogel C-300 (WAKO).

3.2. Materials

Acylpolysilanes 1a [4], 1b [5], 1c [4], 1d [6] were prepared according to the method reported by Brook et al.

3.3. Thermolysis of $\mathbf{1} \boldsymbol{a}$ with benzil

A mixture of $0.0820 \mathrm{~g}(0.246 \mathrm{mmol})$ of 1 a and 0.0630 $\mathrm{g}(0.300 \mathrm{mmol})$ of benzil was heated in a sealed glass tube at $140^{\circ} \mathrm{C}$ for 12 h . Product 2a $(0.0899 \mathrm{~g}, 67 \%$ isolated yield) and the starting compound $\mathbf{1 a}(0.0151 \mathrm{~g}$, 18%) were isolated by column chromatography: MS m/z $542\left[\mathrm{M}^{+}\right]$; IR 2956, 2900, 1600, 1498, 1446, 1259, 1062, 1041, 1022, 935, 902, 863, 840, $755 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\delta\left(\mathrm{CDCl}_{3}\right) 0.12\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Me}_{3} \mathrm{Si}\right), 0.34\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{Me}_{3} \mathrm{Si}\right), 1.34$ (s, $9 \mathrm{H}, t-\mathrm{Bu}), 7.18-7.26(\mathrm{~m}, 6 \mathrm{H}$, phenyl ring protons), $7.42-7.44$ ($\mathrm{m}, 4 \mathrm{H}$, phenyl ring protons); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ $\delta\left(\mathrm{CDCl}_{3}\right) 1.49,5.22\left(\mathrm{Me}_{3} \mathrm{Si}\right), 22.64\left(\mathrm{C}\left(\mathrm{SiMe}_{3}\right)_{2}\right), 33.50$ $\left(\mathrm{Me}_{3} \mathrm{C}\right), 37.10\left(\mathrm{CMe}_{3}\right), 127.05,127.32,128.09,133.47$ (phenyl ring carbons), 136.69 (olefinic carbons); ${ }^{29} \mathrm{Si}$ NMR $\delta\left(\mathrm{CDCl}_{3}\right)-31.5,-0.6,12.7$. Anal. Calc. for $\mathrm{C}_{28} \mathrm{H}_{46} \mathrm{O}_{3} \mathrm{Si}_{4}$: C, 61.93; H, 8.54\%. Found: C, $61.88 ; \mathrm{H}$, 8.24%.

3.4. Thermolysis of $\mathbf{1 b}$ with benzil

A mixture of $0.0792 \mathrm{~g}(0.193 \mathrm{mmol})$ of $\mathbf{1 b}$ and 0.0415 $\mathrm{g}(0.197 \mathrm{mmol})$ of benzil was heated at $140^{\circ} \mathrm{C}$ for 12 h . Product 2b ($0.1077 \mathrm{~g}, 90 \%$ isolated yield) was isolated by column chromatography: MS m/z 620 [M^{+}]; IR 3054, 2956, 2906, 2848, 1600, 1498, 1446, 1261, 1064, 1041, 1022, 937, 906, 844, 755, $734 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR} \delta\left(\mathrm{CDCl}_{3}\right)$ 0.19 (s, $\left.9 \mathrm{H}, \mathrm{Me}_{3} \mathrm{Si}\right), 0.42\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{Me}_{3} \mathrm{Si}\right), 1.67-2.20(\mathrm{~m}$, $15 \mathrm{H}, \mathrm{Ad}$), $7.24-7.32$ ($\mathrm{m}, 6 \mathrm{H}$, phenyl ring protons), $7.48-7.50$ (m, 4H, phenyl ring protons); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ $\delta\left(\mathrm{CDCl}_{3}\right) 1.52,5.79\left(\mathrm{Me}_{3} \mathrm{Si}\right), 26.13\left(\mathrm{C}\left(\mathrm{SiMe}_{3}\right)_{2}\right), 29.84$, 36.57, 40.30, 43.42 (Ad), 127.08, 127.28, 128.09, 133.54 (phenyl ring carbons), 136.74 (olefinic carbons); ${ }^{29} \mathrm{Si}$ NMR $\delta\left(\mathrm{CDCl}_{3}\right)-31.3,-1.4$, 12.3. Anal. Calc. for $\mathrm{C}_{34} \mathrm{H}_{52} \mathrm{O}_{3} \mathrm{Si}_{4}$: C, $65.75 ; \mathrm{H}, 8.44 \%$. Found: C, 65.77 ; H , 8.22\%.

3.5. Thermolysis of $\mathbf{1 c}$ with benzil

A mixture of $0.0452 \mathrm{~g}(0.128 \mathrm{mmol})$ of 1 c and 0.0288 g $(0.137 \mathrm{mmol})$ of benzil was heated at $140{ }^{\circ} \mathrm{C}$ for 12 h . Product 2c ($0.0473 \mathrm{~g}, 66 \%$ isolated yield) was isolated by column chromatography: MS m/z 562 [M ${ }^{+}$]; IR 3054, 2956, 2898, 1596, 1498, 1444, 1257, 1157, 1064, 1049, 1024, 935, 902, 838, $755 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR} \delta\left(\mathrm{CDCl}_{3}\right) 0.14$ (s, $9 \mathrm{H}, \mathrm{Me}_{3} \mathrm{Si}$), 0.27 ($\mathrm{s}, 18 \mathrm{H}, \mathrm{Me}_{3} \mathrm{Si}$), 7.15 (t, 1 H , phenyl ring proton, $J=7.3 \mathrm{~Hz}$), $7.27-7.34(\mathrm{~m}, 8 \mathrm{H}$, phenyl ring protons), $7.52-7.57\left(\mathrm{~m}, 6 \mathrm{H}\right.$, phenyl ring protons); ${ }^{13} \mathrm{C}-$ NMR $\delta\left(\mathrm{CDCl}_{3}\right) 1.33,1.96\left(\mathrm{Me}_{2} \mathrm{Si}\right), 24.40\left(\mathrm{C}\left(\mathrm{SiMe}_{3}\right)_{2}\right)$, $124.15,127.13,127.47,127.87,128.15,131.33,133.24$, $136.99,139.74$ (phenyl ring and olefinic carbons); ${ }^{29} \mathrm{Si}-$ NMR $\delta\left(\mathrm{CDCl}_{3}\right)-34.2,2.0$, 13.8. Anal. Calc. for $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{O}_{3} \mathrm{Si}_{4}: \mathrm{C}, 64.00 ; \mathrm{H}, 7.52 \%$. Found: C, $64.30 ; \mathrm{H}$, 7.50%.

3.6. Thermolysis of $\mathbf{1 d}$ with benzil

A mixture of $0.0770 \mathrm{~g}(0.195 \mathrm{mmol})$ of $\mathbf{1 d}$ and 0.0430 $\mathrm{g}(0.205 \mathrm{mmol})$ of benzil was heated at $140^{\circ} \mathrm{C}$ for 12 h . Product 2d ($0.0520 \mathrm{~g}, 44 \%$ isolated yield) and the starting compound $\mathbf{1 d}(0.0326 \mathrm{~g}, 42 \%)$ were isolated by column chromatography: MS m/z 604 [M ${ }^{+}$]; IR 3027, 2956, 2919, 2890, 1600, 1448, 1263, 1064, 1024, 939, 885, 844, $754 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR} \delta\left(\mathrm{CDCl}_{3}\right) 0.11$ (s, $\left.9 \mathrm{H}, \mathrm{Me}_{3} \mathrm{Si}\right)$, $0.31\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{Me}_{3} \mathrm{Si}\right), 2.23$ (s, 3H, Me-Ar), 2.66 (s, 6H, $\mathrm{Me}-\mathrm{Ar}$), 6.82 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ar}$), 7.21-7.29 (m, 6H, phenyl ring protons), $7.47-7.49$ ($\mathrm{m}, 4 \mathrm{H}$, phenyl ring protons); ${ }^{13} \mathrm{C}-\mathrm{NMR} \delta\left(\mathrm{CDCl}_{3}\right) 1.39,5.82\left(\mathrm{Me}_{2} \mathrm{Si}\right), 20.03(\mathrm{Me}-\mathrm{Ar})$, 25.07 ($\left.\mathrm{C}\left(\mathrm{SiMe}_{3}\right)_{2}\right), 26.59(\mathrm{Me}-\mathrm{Ar}), 126.93,127.23$, 128.06, 131.17, 133.33, 133.39, 136.87, 136.91, 139.48 (phenyl and mesityl ring and olefinic carbons); ${ }^{29} \mathrm{Si}-$ NMR $\delta\left(\mathrm{CDCl}_{3}\right)-36.2,4.1$, 12.6. Anal. Calc. for $\mathrm{C}_{33} \mathrm{H}_{48} \mathrm{O}_{3} \mathrm{Si}_{4}$: C, $65.51 ; \mathrm{H}, 8.00 \%$. Found: C, $65.31 ; \mathrm{H}$, 8.16\%.

3.7. Photolysis of 1 a with benzil

A solution of $0.0646 \mathrm{~g}(0.194 \mathrm{mmol})$ of $\mathbf{1 a}$ and 0.0424 $\mathrm{g}(0.202 \mathrm{mmol})$ of benzil in 0.3 ml of benzene $-d_{6}$ was placed in an NMR tube with a rubber septum cap. This tube was irradiated over 12 h , by which time NMR spectra indicated the absence of starting material. The mixture was analyzed by NMR spectra as being 3a. Product 3a ($0.0963 \mathrm{~g}, 91 \%$) were isolated by column chromatography. For 3a: MS $m / z 542\left[\mathrm{M}^{+}\right]$; IR 3054, 2954, 2898, 1612, 1494, 1444, 1263, 1133, 1056, 1025, 923, 844, 754, $696 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR} \quad \delta\left(\mathrm{CDCl}_{3}\right) 0.23(\mathrm{~s}$, $\left.9 \mathrm{H}, \mathrm{Me}_{3} \mathrm{Si}\right), 0.28$ (s, $9 \mathrm{H}, \mathrm{Me}_{3} \mathrm{Si}$), 0.29 (s, $9 \mathrm{H}, \mathrm{Me}_{3} \mathrm{Si}$), $1.22(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 7.11-7.31(\mathrm{~m}, 10 \mathrm{H}$, phenyl ring protons); ${ }^{13} \mathrm{C}$-NMR $\quad \delta\left(\mathrm{CDCl}_{3}\right) \quad-1.23, \quad 2.47, \quad 2.97$ $\left(\mathrm{Me}_{3} \mathrm{Si}\right), 28.36\left(\mathrm{Me}_{3} \mathrm{C}\right), 38.04\left(\mathrm{CMe}_{3}\right), 82.58(\mathrm{CO})$, 126.27, 126.91, 127.47, 127.58, 128.65, 129.64, 131.75, $137.48,137.60,138.14$ (phenyl and olefinic carbons); ${ }^{29} \mathrm{Si}-\mathrm{NMR} \delta\left(\mathrm{CDCl}_{3}\right)-24.9,-21.0,3.2,10.4$. Anal. Calc. for $\mathrm{C}_{28} \mathrm{H}_{46} \mathrm{O}_{3} \mathrm{Si}_{4}$: C, $61.93 ; \mathrm{H}, 8.54 \%$. Found: C, 61.67; H, 8.24\%.

3.8. Thermolysis of 3a at $140^{\circ} \mathrm{C}$

Compound $3 \mathbf{a}(0.0453 \mathrm{~g}, 0.0834 \mathrm{mmol})$ was heated in a sealed glass tube at $140^{\circ} \mathrm{C}$ for 12 h . The mixture was analyzed by NMR spectra as being 2a. Product 2a $(0.0450 \mathrm{~g}, 99 \%)$ were isolated by column chromatography. All spectral data obtained for $\mathbf{2 a}$ were identical with those of an authentic sample obtained from the above reaction.

3.9. Photolysis of $\mathbf{1 b}$ with benzil

A solution of $0.0565 \mathrm{~g}(0.138 \mathrm{mmol})$ of $\mathbf{1 b}$ and 0.0286 $\mathrm{g}(0.136 \mathrm{mmol})$ of benzil in 0.3 ml of benzene $-d_{6}$ was placed in an NMR tube with a rubber septum cap. This tube was irradiated over 12 h , by which time NMR spectra indicated the absence of starting material. The mixture was analyzed by NMR spectra as being 3 . Product 3 ($0.0799 \mathrm{~g}, 93 \%$) were isolated by column chromatography. For 3: MS $m / z 620\left[\mathrm{M}^{+}\right]$; IR 2948, 2904, 2848, 1612, 1444, 1261, 1054, 1024, 842, 755, 694 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR} \delta\left(\mathrm{CDCl}_{3}\right) 0.24\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Me}_{3} \mathrm{Si}\right), 0.30(\mathrm{~s}$, $9 \mathrm{H}, \mathrm{Me}_{3} \mathrm{Si}$), 0.32 (s, $9 \mathrm{H}, \mathrm{Me}_{3} \mathrm{Si}$), 1.71-2.04 (m, 15 H , Ad), $7.10-7.32$ ($\mathrm{m}, 10 \mathrm{H}$, phenyl ring protons); ${ }^{13} \mathrm{C}$ NMR $\delta\left(\mathrm{CDCl}_{3}\right)-1.09,2.47,3.58\left(\mathrm{Me}_{3} \mathrm{Si}\right), 28.92,36.99$, 40.35, 40.54 (Ad), 84.58 (CO), 126.26, 126.85, 127.48, $127.55,128.70,129.66,131.97,137.41$ (2C), 138.20 (phenyl and olefinic carbons); ${ }^{29} \mathrm{Si}-\mathrm{NMR} \quad \delta\left(\mathrm{CDCl}_{3}\right)$ $-25.7,-20.8,2.8,10.2$. Anal. Calc. for $\mathrm{C}_{34} \mathrm{H}_{52} \mathrm{O}_{3} \mathrm{Si}_{4}$: C, $65.75 ;$ H, 8.44%. Found: C, 65.55 ; H, 8.14%.

3.10. Thermolysis of 3b at $140^{\circ} \mathrm{C}$

Compound $3(0.0510 \mathrm{~g}, 0.0822 \mathrm{mmol})$ was heated in a sealed glass tube at $140^{\circ} \mathrm{C}$ for 12 h . The mixture was analyzed by NMR spectra as being 2b. Product 2b $(0.0501 \mathrm{~g}, 98 \%)$ were isolated by column chromatography. All spectral data obtained for $\mathbf{2 b}$ were identical with those of an authentic sample obtained from the above reaction.

3.11. Thermolysis of $1 a$ with $4,4^{\prime}$-dimethylbenzil

A mixture of $0.0442 \mathrm{~g}(0.133 \mathrm{mmol})$ of $\mathbf{1 a}$ and 0.0332 $\mathrm{g}(0.139 \mathrm{mmol})$ of $4,4^{\prime}$-dimethylbenzil was heated in a sealed glass tube at $140^{\circ} \mathrm{C}$ for 12 h . Product $\mathbf{4 a}(0.0482$ $\mathrm{g}, 63 \%$ isolated yield) and the starting compound $\mathbf{1 a}$ ($0.0121 \mathrm{~g}, 27 \%$) were isolated by column chromatography: MS m/z $570\left[\mathrm{M}^{+}\right]$; IR 2956, 2919, 1610, 1515, $1255,1058,1039,1018,935,904,863,842,755 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR} \delta\left(\mathrm{CDCl}_{3}\right) 0.15\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Me}_{3} \mathrm{Si}\right), 0.36(\mathrm{~s}, 18 \mathrm{H}$, $\mathrm{Me}_{3} \mathrm{Si}$), 1.36 (s, $9 \mathrm{H}, t-\mathrm{Bu}$), 2.35 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{Me}-\mathrm{Ar}$), 7.09 (d, 4 H , phenylene ring protons, $J=8.3 \mathrm{~Hz}$), $7.36(\mathrm{~d}, 4 \mathrm{H}$, phenylene ring protons, $J=8.3 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$-NMR $\delta\left(\mathrm{CDCl}_{3}\right) 1.47,5.21\left(\mathrm{Me}_{3} \mathrm{Si}\right), 21.27(\mathrm{Me}-\mathrm{Ar}), 22.64$ $\left(\mathrm{C}\left(\mathrm{SiMe}_{3}\right)_{2}\right), 33.50\left(\mathrm{Me}_{3} \mathrm{C}\right), 37.09 \quad\left(\mathrm{CMe}_{3}\right), 126.93$, 128.78, 130.77, 136.26, 136.94 (phenylene ring and olefinic carbons); ${ }^{29} \mathrm{Si}-\mathrm{NMR} \delta\left(\mathrm{CDCl}_{3}\right)-31.6,-0.7$, 12.5. Anal. Calc. for $\mathrm{C}_{30} \mathrm{H}_{50} \mathrm{O}_{3} \mathrm{Si}_{4}: \mathrm{C}, 63.10 ; \mathrm{H}, 8.83 \%$. Found: C, 63.00; H, 8.50\%.

3.12. Thermolysis of $\mathbf{1 b}$ with $4,4^{\prime}$-dimethylbenzil

A mixture of $0.0691 \mathrm{~g}(0.168 \mathrm{mmol})$ of $\mathbf{1 b}$ and 0.0465 $\mathrm{g}(0.195 \mathrm{mmol})$ of $4,4^{\prime}$-dimethylbenzil was heated at $140^{\circ} \mathrm{C}$ for 12 h . Product 4b $(0.0983 \mathrm{~g}, 90 \%$ isolated yield) was isolated by column chromatography: MS m / z $648\left[\mathrm{M}^{+}\right]$; IR 2956, 2906, 2848, 1608, 1515, 1448, 1253, 1060, 1037, 1018, 935, 906, 842, $734 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\delta\left(\mathrm{CDCl}_{3}\right) 0.18$ (s, $\left.9 \mathrm{H}, \mathrm{Me}_{3} \mathrm{Si}\right), 0.41$ (s, $\left.18 \mathrm{H}, \mathrm{Me}_{3} \mathrm{Si}\right)$, $1.66-1.74(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ad}), 2.03$ (br s, 3H, Ad), 2.19 (br s, $6 \mathrm{H}, \mathrm{Ad}$), 2.37 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{Me}-\mathrm{Ar}$), 7.11 (d, 4H, phenylene ring protons, $J=8.2 \mathrm{~Hz}$), 7.39 (d, 4 H , phenylene ring protons, $J=8.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-\mathrm{NMR} \delta\left(\mathrm{CDCl}_{3}\right) 1.51,5.78$ $\left(\mathrm{Me}_{3} \mathrm{Si}\right), 21.28$ (Me-Ar), $26.06\left(\mathrm{C}\left(\mathrm{SiMe}_{3}\right)_{2}\right), 29.84$, 36.58, 40.27, 43.40 (Ad), 126.94, 128.78, 130.84, 136.31, 136.89 (phenylene ring and olefinic carbons); ${ }^{29} \mathrm{Si}-\mathrm{NMR} \delta\left(\mathrm{CDCl}_{3}\right)-31.3,-1.4,2.1$. Anal. Calc. for $\mathrm{C}_{36} \mathrm{H}_{56} \mathrm{O}_{3} \mathrm{Si}_{4}$: C, $66.61 ; \mathrm{H}, 8.69 \%$. Found: C, 66.23 ; H , 8.68\%.

3.13. Thermolysis of $\mathbf{1 c}$ with 4,4'-dimethylbenzil

A mixture of $0.0459 \mathrm{~g}(0.130 \mathrm{mmol})$ of $\mathbf{1 c}$ and 0.0311 g $(0.131 \mathrm{mmol})$ of $4,4^{\prime}$-dimethylbenzil was heated at $140{ }^{\circ} \mathrm{C}$ for 12 h . Product $4 \mathrm{c}(0.0595 \mathrm{~g}, 77 \%$ isolated yield) was isolated by column chromatography: MS m / z
$590\left[\mathrm{M}^{+}\right]$; IR 3054, 3029, 2956, 2898, 1608, 1515, 1498, 1253, 1058, 1045, 935, 904, 840, $755 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\delta\left(\mathrm{CDCl}_{3}\right) 0.12\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Me}_{3} \mathrm{Si}\right), 0.26\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{Me}_{3} \mathrm{Si}\right), 2.38$ (s, 6H, Me-Ar), 7.13-7.16 (m, 5H, phenyl and phenylene ring protons), 7.28 ($\mathrm{m}, 2 \mathrm{H}$, phenyl ring protons), 7.42 (d, 4 H , phenyl ring protons, $J=8.2 \mathrm{~Hz}$), 7.55 (d, 2 H , phenyl ring protons, $J=8.2 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ $\delta\left(\mathrm{CDCl}_{3}\right) 1.32,1.92\left(\mathrm{Me}_{2} \mathrm{Si}\right), 21.13(\mathrm{Me}-\mathrm{Ar}), 24.32$ $\left(\mathrm{C}\left(\mathrm{SiMe}_{3}\right)_{2}\right), 124.06,126.98,127.83,128.85,130.51$, 131.34, 136.53, 137.12, 139.82 (phenyl and phenylene ring and olefinic carbons); ${ }^{29} \mathrm{Si}-\mathrm{NMR} \delta\left(\mathrm{CDCl}_{3}\right)-34.3$, 2.0, 13.6. Anal. Calc. for $\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{O}_{3} \mathrm{Si}_{4}$: C, $65.03 ; \mathrm{H}$, 7.84%. Found: C, 65.00 ; H, 7.77%.

3.14. Thermolysis of $\mathbf{1 d}$ with benzil

A mixture of $0.0788 \mathrm{~g}(0.200 \mathrm{mmol})$ of $\mathbf{1 d}$ and 0.0580 $\mathrm{g}(0.243 \mathrm{mmol})$ of benzil was heated at $140^{\circ} \mathrm{C}$ for 12 h . Product 4d ($0.0286 \mathrm{~g}, 23 \%$ isolated yield) and the starting compound $1 \mathbf{1 d}(0.0492 \mathrm{~g}, 62 \%)$ were isolated by column chromatography: MS m/z $632\left[\mathrm{M}^{+}\right]$; IR 2958, 2919, 1610, 1515, 1263, 1091, 1058, 1018, 937, 887, 846, $798,755 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR} \delta\left(\mathrm{CDCl}_{3}\right) 0.10\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Me}_{3} \mathrm{Si}\right)$, 0.30 ($\mathrm{s}, 18 \mathrm{H}, \mathrm{Me}_{3} \mathrm{Si}$), 2.19 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}-\mathrm{Ar}$), 2.34 ($\mathrm{s}, 6 \mathrm{H}$, $\mathrm{Me}-\mathrm{Ar}$), 2.65 (s, 6H Me-Ar), 6.81 (s, 2H, H-Ar), 7.08 (d, 4 H , phenylene ring protons, $J=8.2 \mathrm{~Hz}$), $7.36(\mathrm{~d}, 4 \mathrm{H}$, phenylene ring protons, $J=8.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\delta\left(\mathrm{CDCl}_{3}\right) 1.38,5.80\left(\mathrm{Me}_{2} \mathrm{Si}\right), 20.03(\mathrm{Me}-\mathrm{Ar}), 21.29$ (Me-Ar), $25.04\left(\mathrm{C}\left(\mathrm{SiMe}_{3}\right)_{2}\right), 26.59(\mathrm{Me}-\mathrm{Ar}), 126.80$, 128.76, 130.68, 131.15, 133.27, 136.48, 136.87, 136.94, 139.51 (phenylene and mesityl ring and olefinic carbons); ${ }^{29} \mathrm{Si}-\mathrm{NMR} \delta\left(\mathrm{CDCl}_{3}\right)-36.2,4.1,12.5$. Anal.

Calc. for $\mathrm{C}_{35} \mathrm{H}_{52} \mathrm{O}_{3} \mathrm{Si}_{4}$: C, $66.40 ; \mathrm{H}, 8.28 \%$. Found: C, 66.44; H, 8.16\%.

Acknowledgements

This work was supported by a Grant-in Aid for Scientific Research (No. 14750687) from the Ministry of Education, Science, Sports, and Culture of Japan to which our thanks are due.

References

[1] (a) A.G. Brook, J. Organomet. Chem. 300 (1986) 21;
(b) A.G. Brook, in: S. Patai, Z. Rappoport (Eds.), The Chemistry of Organic Silicon Compounds; Part 2 (Chapter 15), Wiley, New York, 1989 (Chapter 15).
[2] (a) M. Ishikawa, S. Matsui, A. Naka, J. Ohshita, Main Group Chem. 1 (1996) 219;
(b) M. Ishikawa, S. Matsui, A. Naka, J. Ohshita, Organometallics 15 (1996) 3836;
(c) A. Naka, M. Ishikawa, S. Matsui, J. Ohshita, A. Kunai, Organometallics 15 (1996) 5759;
(d) A. Naka, M. Ishikawa, J. Organomet. Chem. 611 (2000) 248;
(e) A. Naka, M. Ishikawa, Organometallics 19 (2000) 4921;
(f) A. Naka, M. Ishikawa, Chem. Lett. (2002) 364.
[3] (a) A. Naka, J. Ikadai, S. Motoike, K. Yoshizawa, Y. Kondo, S.-Y. Kang, M. Ishikawa, Organometallics 21 (2002) 2033; (b) A. Naka, M. Ishikawa, manuscript in preparation.
[4] A.G. Brook, J.W. Harris, J. Lennon, M. Elsheikh, J. Am. Chem. Soc. 101 (1979) 83.
[5] A.G. Brook, S.C. Nyburg, F. Abdesaken, B. Gutekunst, G. Gutekunst, R. Krishna, M.R. Kallury, Y.C. Poon, Y.-M. Chan, W. Wong-Ng, J. Am. Chem. Soc. 104 (1982) 5667.
[6] A.G. Brook, H.-J. Wessely, Organometallics 4 (1985) 1487.

[^0]: * Corresponding author. Tel.: +81-864401086; fax: +81864401062.

 E-mail address: mishika@chem.kusa.ac.jp (M. Ishikawa).

